Давайте начнем с маленькой загадки — как вы думаете, что это такое?
Ну а пока представьте, что вы хотите рассмотреть что-то очень маленькое, то что невозможно увидеть просто “присмотревшись повнимательнее”? Или вы хотите увидеть самые мелкие детали чего-то? Что вы используете?
Первое, что приходит в голову — использовать лупу или сразу взяться за микроскоп!
Но что делать, если вы хотите рассмотреть саму структуру чего-то, например, увидеть транзистор в процессоре?
Что вы сделаете? Просто переключитесь в микроскопе на линзу с большим увеличением? Сработает ли это?
Сегодня мы с вами покроем множество очень интересных тем:
- посмотрим на настоящий электронный микроскоп,
- поймем — зачем он вообще нужен,
- разберемся как увеличить что-то в сотни тысяч раз с помощью электронов и расскажем как человек научился видеть отдельные атомы!
Все как вы любите! Подробно и понятно…
Ну и еще сразу вам тут затравочку — сегодня мы посмотрим на Droider в настоящий электронный микроскоп! И нет — это не кликбейт!
Наверняка кто-то из вас в детстве по примеру Шерлока Холмса с помощью обычной линзы разглядывал все вокруг! Ведь это так круто видеть что-то в увеличении — создается ощущение, что открывается абсолютно новый, неизведанный маленький мир.
Так вот, если говорить простыми словами, то по принципу обычной увеличительной линзы и работает обычный оптический микроскоп!
Конечно, его устройство сильно сложнее — микроскоп это комбинация линз с заранее подобранными оптическими параметрами, которые собраны в правильной комбинации. Однако, сам принцип работы остается тем же.
Свет в видимом диапазоне длин волн либо проходит сквозь объект, либо отражается от поверхности, и, проходя, через систему увеличивающих и фокусирующих линз попадает сначала в окуляр и потом к нам в глаз.
Современные оптические микроскопы — это действительно массивные и сложные устройства, состоящие из десятков различных линз и зеркал, которые собраны в особом порядке, чтобы дать человеку возможность смотреть на объекты разного типа и с разным увеличением!
И линзы бывают разные. От линз с 2-3 кратным увеличением до довольно массивных линз со способностью увеличивать объекты в 100 раз. Только посмотрите на разрез линзы от компании Цайз с 50кратным увеличением! А комбинацией с правильным окуляром можно добиться увеличения даже в две тысячи раз.
Проблема
И тут мы можем задать вопрос — в чем же тогда проблема вообще? Ведь можно просто до безумия искривлять линзы и создавать сложные системы, которые будут увеличивать даже в десятки тысяч раз. Таким образом мы и сможем посмотреть на самые крошечные детали чего угодно! Но все как обычно очень непросто и связано это с физическими ограничениями видимого света!
Ведь видимый свет это волна с определенной длинной. Оптический микроскоп использует его оптический спектр, то есть примерно от 800 до 400 нанометров.
А физика, бессердечная такая сволочь, к сожалению не позволяет нам, различать объекты, которые меньше примерно половины длины волны. То есть с помощью обычного оптического микроскопа, мы не сможем различить ничего что мельче примерно 200 нанометров.
Это ограничение получило название в честь Немецкого ученого Эрнста Аббе, которое так и называется — Дифракционный предел Аббе. И он позволяет получить значение минимального разрешения не только для видимого света, но и для любой другой электромагнитной волны. Вы ведь помните что свет — это тоже электромагнитная волна?
Внимательный наш читатель вспомнит, что эту же формулу мы показывали вам в ролике про экстремальную ультрафиолетовую литографию, когда говорили об ограничении разрешения для глубокого ультрафиолета. Так вот тут тоже самое.
Современные микроскопы со специальными линзами, конечно, умеют смотреть на маленькие объекты и позволяет, например, увидеть живые клетки или даже бактерии, но этого все равно не хватает, например, чтобы увидеть вирусы — тот же самый SARS-COV-2.
Решение проблемы
И как же обойти эту проблему? Да и вообще возможно ли ее обойти? Оказалось? что да. В целом есть два пути.
STED микроскопия
Первый путь, о котором мы вам тут расскажем — это изобретение за которое совсем недавно, в 2014 году, была вручена Нобелевская премия по химии.
Это так называемая STED или микроскопия на основе подавления спонтанного испускания. Именно она позволяет преодолеть дифракционный предел оптического микроскопа.
Правда у технологии есть ограничение — совсем не все материалы можно рассмотреть в такой микроскоп. Но она позволила видеть различные сложные белковые, да и другие органические соединения!
Это связано с тем, что необходимо смотреть на материалы, которые могут переходить в особое состояние под воздействием лазерного излучения. То есть в состояние, когда они сами начинают испускать свет!
Как же это работает?
Тут используется два лазера, один из которых называется возбуждающий лазер, и второй, специально подобранный по параметрам длины волны. Он называется охлаждающим лазером.
Этот охлаждающий лазер компенсирует по периметру возбуждение от первого лазера и в результате сочетания этих волн создается очень маленькая область, которая начинает светиться. Появилась возможность различать объекты величиной уже около 30 нм, что уже позволяет видеть вирусы, например! А это почти в 7 раз меньше, чем у обычного микроскопа! Все равно, что с Земли рассмотреть футбольный мяч на Луне! Вот такой вот элегантный метод обмануть физику!
Электронный микроскоп
Ну хорошо. Теперь мы разобрались с тем, как можно преодолеть физический барьер в оптической микроскопии. Какой же второй путь обхода барьера? Да и что делать, если мы хотим увидеть неорганические вещества или вообще что-то меньше 30 нанометров?
И тут мы опять возвращаемся к нашей формуле, которая говорит нам о том, что максимальное разрешение — это половина длины электромагнитной волны. И ученые подумали — а зачем использовать видимый спектр, когда можно взять что-то с очень короткой длиной волны и пошли смотреть, что же там есть в коротковолновом спектре!
В общем, они решили не мелочиться и использовать сразу пучок электронов. Ведь длина волны электронов, ускоренных в электрическом поле равна примерно 0,4 Ангстрем. Или 0.04 нанометра! Это в 10 тысяч раз меньше, чем у видимого света! Кстати, если вы не знали, то размер атома водорода как раз около 1 Ангстрема. Итак, давайте разберемся что же такого крутого в электронных микроскопах!
Источник электронов и линзы
Сам концепт и первый прототип такого микроскопа был представлен, вы не поверите, еще в 1932 году, в Германии, и выглядел он вот так!
В целом, принцип работы с тех пор остался почти неизменный, хотя конечно его использование стало намного более User Friendly.
Но как же он работает?
Если вы смотрели наше крутое видео о магии создания процессора или читали материал, то там мы рассказывали, что для испарения некоторых материалов используется сфокусированный луч электронов и источником этих электронов служит вольфрамовая нить. В электронном микроскопе все примерно также. Зачастую вольфрам служит источником электронов. Тонкая нить нагревается до высоких температур и начинает испускать электроны в большом количестве.
А дальше начинается самое интересное. Эти электроны надо ускорить и сфокусировать. Да — сфокусировать именно так, как вы фиксируете свет в вашем объективе или обычном оптическом микроскопе. Только в этом случае воспользоваться стеклянными линзами просто не получится — весь электронный пучок полностью поглотится на самой первой линзе. В итоге для этого надо использовать электростатические линзы. Фактически, это такие электроды специальной формы, которые создает определенное электромагнитное поле. Это и позволяет фокусировать луч электронов, а также ускорять их до больших энергий!
Так же как и свет, падающий на поверхность материала в оптическом микрокопе, электронный луч дает нам информацию и позволяет фактически увидеть образец.
СЭМ
Тут стоит сказать, что в целом существует два основных типа электронных микроскопов, которые очень сильно отличаются.
Первый — это так называемый сканирующий электронный микроскоп, или просто СЭМ.
В нем сфокусированный пучок электронов попадает на поверхность образца практически любого размера, и происходит магия физики, из-за которой одни электроны выбивают другие электроны из атомов материала, на который мы смотрим.
Эти новые электроны называются вторичными и обладают относительно маленькими энергиями, что и позволяет специальному детектору их легко улавливать. Появление этих вторичных электронов происходит очень локально и это позволяет повысить точность получение изображения.
Дальше сфокусированный пучок начинает сканировать поверхность материала и в зависимости от рельефа поверхности на детектор попадает разное количество вторичных электронов. Вот так и получается картинка.
Именно поэтому все изображения с электронного микроскопа черно-белые. То есть фактически — это просто разная интенсивность в разных участках снимка. А любые цветные изображения с электронного микроскопа — это просто раскрашенные картинки.
СЭМы — самые часто используемые микроскопы на производствах процессоров, так как они позволяют быстро посмотреть на качество поверхности, да и вообще их используют для контроля на каждом этапе изготовления.
ПЭМ
И перед тем, как мы посмотрим на Droider в микроскоп, надо рассказать про еще один незаменимый инструмент в руках ученых и инженеров!
Это просвечивающий электронный микроскоп или ПЭМ! Это огромная труба, занимающая одну, а то и две комнаты. А стоит он около миллиона долларов. Но на самом деле интересно не то сколько он стоит, тут понятно что такая техника очень дорогая.
Интересно то, что для его работы строят специальные комнаты, с огромными бетонными подушками, уходящими на много метров под землю. Они нужны чтобы гасить любые вибрации и возмущения — вот настолько чувствительно это оборудование. Если бы не такие подушки, то любое изображение было бы смазанным из-за того, что кто-то хлопнул дверью в другом конце здания.
Его отличие от СЭМа в том, что он имеет гораздо большее разрешение! И связано это с особенностями самого образца и пучка электронов.
Если в СЭМе мы регистрировали новые электроны, которые вылетели из нашего образца под воздействием электронного пучка, то в ПЭМе мы смотрим на то как меняется наш исходный пучок электронов, который пролетел сквозь образец.
Суть в том, что пролетая через образец и взаимодействуя с атомами материала электроны меняются, а дальше попадают в детектор, который уже и говорит нам о том, как именно поменялся сам исходный пучок электронов.
Если вы внимательно слушали наше объяснение, то вы можете спросить, как же так — ведь электроны просто рассеются в образце и мы ничего не увидим.
И вы будете абсолютно правы! Ведь для ПЭМа нужно специально подготавливать образцы — они должны быть очень тонкими. До 100 нанометров, а вообще чем тоньше, тем лучше. В идеале всего десять-двадцать нанометров.
Для этого используются сложные методы подготовки образцов, например специальный луч ионов, который как тонкий лазер вырезает маленький кусок образца, который потом исследуют уже в микроскопе. Это и позволяет с помощью ПЭМа ученым видеть даже отдельные атомы!
Вот посмотрите: каждая точка это атом Палладия, видно даже то насколько ровная кристаллическая решетка у материала! Обратите внимание на шкалу в левом нижнем углу, всего один нанометр. И мы уже сейчас можем такое видеть, потрясающе!
Droider в электронном микроскопе
Теперь когда мы с вами разобрались с тем, как работает электронный микроскоп — настало время посмотреть на надпись Droider в настоящий электронный микроскоп, а точнее в СЭМ. Она была вырезана лазером на тонком листе нержавеющей стали. Более того были сделаны много надписей от большой, до надписи размером несколько микрометров.
Тут вы видите загрузку этой пластины в микроскоп!
А вот сама пластина в микроскопе уже. Кстати на всех этих картинках обращайте внимание на шкалу масштаба и на цифры в у параметра Mag, то есть увеличение! Вот уже можно рассмотреть надпись Droider с увеличением в 55 раз.
Так едем вниз к надписи поменьше.
Интересно, а какой толщины буква i в этой надписи — давайте глянем. Всего 100 микрометров, чуть толще человеческого волоса.
Так? но есть надпись и еще меньше — едем еще ниже и смотрим внимательнее.
Тут уже видно что увеличение 200 раз, но сама надпись уже плохо различима. Но это проблема не микроскопа, а лазера которым вырезалась надпись. Он просто не может такую мелкую надпись сделать! Ведь тут буква i уже 40 микрометров.
Но раз мы уткнулись в ограничения лазера, то давайте вернемся обратно, к самой большой надписи и посмотрим на структуру самой стали. Итак вот самая большая i. Пол миллиметра в толщине. Приближаем к нижнему краю.
Так увеличение уже почти полторы тысячи раз. Самое время посмотреть на то какой толщины след от лазера. Всего 40 микрометров.
Едем еще ближе и вот увеличение уже 6300 раз. Вот и ответ на наш вопрос из начала видео — это структура обработанной и необработанной стали!
Давайте посмотрим еще ближе теперь увеличение уже 40 тысяч раз. Мы уже в наномире! Смотрите какая красота — это сталь, по которой прошелся лазерный луч, когда вырезал букву i в слове Droider!
Но еще интересно глянуть, как выглядела сталь до обработки — что ж давайте глянем с таким же увеличением. Разница огромная!
Ну и наконец, давайте глянем на обработанную сталь с огромным увеличением в 300 тысяч раз. Ширина этого канала от лазера всего 300 нанометров!
Выводы
Электронный микроскоп — незаменимый инструмент в руках ученых и инженеров. Он не просто позволяет посмотреть на что-то маленькое — он позволяет увидеть саму структуру материалов, вплоть до атомов! Кроме того эти микроскопы позволяют смотреть не только на структуру, но и определять химический состав материала!
Это все очень полезно, когда например инженеры на производстве микропроцессоров или экранов пытаются понять, где и какой материал они осадили, как выглядят их транзисторы, много ли дефектов, да и вообще выявить брак.
Конечно, мы тут почти не сказали о том, как подготавливаются образцы для изучения, и например о том, что все такие микроскопы работают в глубоком вакууме, для получения которого используют специальные насосы, которые вращаются со скоростью в 50 тысяч оборотов в минуту. В общем, нам есть, что обсудить и рассказать…