Как работают проекторы и какие они бывают? Разбор

Мы уже поднимали тему проекторов, но разобрались в ней недостаточно… Сегодня мы поговорим про типы проекторов и расскажем про взрывную технологию.
vedensky 9 августа 2021 в 08:51

Мы с вами кое-что пропустили… Может вы замечали, что проекторы всегда создавали ощущение чуда. Пленочные диафильмы на чердаке, первый поход в кинотеатр — настоящая магия…

Но за последние 40 лет проекторы из “эмоционального” чуда стали чудом “техническим”. И на первый взгляд может показаться, что интересного: это просто картинка, на которую светит лампа, типа как в диафильме? Но на самом деле все куда сложнее. Сегодня мы разберём как устроены современные проекторы.

Узнаем, что такое цифровая обработка света и зачем внутрь проектора помещать два миллиона зеркал?

Протестируем топовый современный проектор и откроем страшную тайну про “настоящее” 4K-разрешение.

И, заранее извиняюсь, если после этого ролика вы захотите купить проектор.

Проблема с проекторами

Почему вообще большинство из нас с вами долгое время на проекторы не обращали никакого внимания?

Дело в том, что на протяжении последних лет двадцати все цифровые проекторы грубо можно было поделить только на две категории, которые называются:

  1. “Кхм, простите, кажется, тут лишние нули в ценнике”
  2. “Эм, что-то не видно ничего, может на телике включим?”

И такая ситуация была связана с ключевой проблемой: технология проецирования цифрового изображения была настолько сложной и несовершенной, что добиться хорошего качества можно было только за очень большую цену. И вот как мы к этому пришли.

Пленочные проекторы

В эпоху плёнки проекторы были очень просто устроены: берем яркую лампу лампу, светим ей на плёнку, фокусируем всё оптикой и готово! Вот тебе изображение на стене.

Нужно чтобы изображение двигалось? Просто крутим бобину. А вот с цифровыми проекторами всё оказалось куда сложнее.

1LCD-проекторы

Сначала плёнку попробовали заменить LCD матрицей. Так появились LCD проекторы. Они были устроены один в один как пленочные, просто вместо плёнки стали использовать цветную жидкокристаллическую матрицу. Точно такую же как в большинстве современных дисплеев.

Но, сразу выяснилось: что хорошо подходит для маленьких дисплеев, плохо подходит для больших проекций.

Во-первых, видны пиксели, а точнее субпиксели. Дело в том, что каждый пиксель в цветных ЖК-дисплеях состоит из трёх RGB-субпикселей, которые стоят рядом друг с другом. И если на маленьком дисплее мы субпикселей не видим, то на большой проекции они отчетливо видны.

Во-вторых, выяснилось, что ЖК-матрицы просто перегорают от яркого света ламп. Поэтому встал выбор: либо снижать мощность и, соответственно, яркость, либо постоянно менять перегоревшие матрицы.

3LCD-проекторы

Тогда, чтобы решить эти проблемы, в 1989 году стали использовать три монохромных LCD матрицы вместо одной цветной. И технологию назвали 3LCD. И вот в этот момент проекторы стали становиться куда сложнее. Смотрите сами, как это всё работало.

При помощи системы дихронических зеркал световой поток разделся на три канала — RGB. Каждый из которых попадал на три ЖК-матрицы. После этого в специальной призме, три канала обратно сливались в многоцветное изображение.

Такая схема оказалось очень удачной:

  • Избавились от эффекта RGB-субпикселей.
  • А сама картинка получается яркая и насыщенная.

Поэтому такие проекторы используются по сей день.

Тем не менее она не лишена недостатков:

  • Увеличилась цена, ведь три матрицы стоят больше одной матрицы.
  • Увеличился размер проекторов.
  • Все три матрицы по-прежнему нужно охлаждать. Из-за чего проекторы шумят, а матрицы покрываются пылью.
  • Кроме того, такая схема требуют юстировки, и далеко не всегда получается идеально совместить изображение с трех матриц.
  • Плюс из-за строения LCD-матриц возникал “screen door effect”, то есть видна сетка пикселей.
  • Ну и, самый главный недостаток технологии 3LCD — неглубокий черный цвет и, как следствие, низкая контрастность.

LCoS-проекторы

Так вот, screen door эффект и низкую контрастность смогли решить, добавив к LCD-матрице отражающий слой. И новую технологию названили LCoS. Что расшифровывается как “жидкие кристаллы на кремнии”, хотя,по хорошему,надо было назвать “отражающий LCD”. Также LCоS проекторы называют: D-ILA, HD-ILA и SXRD. Это всё тоже самое, просто разные названия.

LCoS —Liquid Crystal on Silicon

JVC. D-ILA или HD-ILA — Direct Drive Image Light Amplifier

Sony. SXRD — Silicon X-tal Reflective Display

 

В чём смысл технологии?

Прямо за слоем жидких кристаллов добавили отражающий слой, поэтому свет, попадая на матрицу, стал отражаться и тем самым два раза проходить через жидкие кристаллы. От этого сильно увеличилась контрастность. При этом слой с транзисторами оказался за отражающим слоем, поэтому сильно уменьшился screen door effect. Иными словами — мы наконец-то получили идеальную картинку: яркую, контрастную, без видимой сетки пикселей.

Но всё это достигалось путем еще большего усложнения схемы проектора.

Смотрите сами, было так:

А стало так:

Технология получилась очень дорогой и поэтому сейчас технология LCoS используется только в очень дорогих Hi-End проекторах. И вот так мы пришли к ситуации в которой, если хочется качества, нужно платить много тысяч долларов за LCoS проектор, либо покупать 3LCD и мириться с компромиссами. А другого не дано.

DLP-проектор

И тогда появились принципиально новая технология, которая позволила с одной стороны упростить устройство проекторов, а с другой улучшить качество изображения. А называется технология DLP, т.е. Digital Light Processing, буквально — «цифровая обработка света»

И это просто взрывающая мозг технология. Как эта штука устроена?

Вместо трёх LCD матриц внутри DLP-проектора используется одна DMD матрица, которая состоит из миллионов микрозеркал! В общем-то, DMD так и расшифровывается Digital Micromirror Device, то есть «цифровое микрозеркальное устройство».

Каждое такое зеркало состоит из алюминиевого сплава и может практически мгновенно отклоняться в одно из двух положений, отличающихся друг от друга на угол в 20°. Но зачем? Спросите вы. Смотрите!

Каждое зеркальце соответствует одному пикселю создаваемого изображения. Если зеркальце находится в положении “один” — оно отразит свет строго в объектив и мы видим на экране белую точку. Если зеркальце находится в положении “2”, оно отражает свет в светопоглощающающую поверхность и мы видим на экране черную точку. Так формируется черно-белое изображение на экране.

А если мы будем быстро менять положение зеркальца, пиксель на экране начнет быстро мерцать. Но из-за инертности человеческого зрения, мы не увидим мерцания, а увидим градации серого цвета. Круто! Но как же мы получаем цвет?

Для этого световой поток проходит через специальный цветной диск, который состоит из разноцветных сегментов. Их может быть три, четыре или больше.

Диск быстро вращается и каждый окрашивает в свой цвет по очереди. Но, опять же, из-за инертности зрения мы не видим мерцания, мы просто видим цветное изображение. Звучит сложно, но на самом деле принципиально устройство проектора сильно упростилось:

И выяснилось, что технология DLP даёт массу преимуществ.

Во-первых, глубокий черный цвет и высокая контрастность, ведь на черный пиксель свет не попадает вовсе.

Во-вторых, пропал screen door effect. Размеры микрозеркал сами по себе очень малы, а промежутки между ними еще меньше и обычно не больше одного микрометра. Поэтому и структура изображения на экране не обладает «эффектом решётки», характерным для LCD проекторов.

В-третьих, зеркала не выгорают и не требуют серьёзного охлаждения. Поэтому как правило, DLP проекторы менее шумные. Более того, оптический блок в таких проекторах изолирован, поэтому туда не попадает пыль.

Ну и наконец, такие проекторы куда более компактные и мобильные.

В общем, почти идеальная технология, но тоже со своими недостатками и главный из них “ эффект радуги”. На динамичных контрастных сценах можно заметить радужный шлейф на границах объектов. Это как раз связано с вращающимся цветным диском.

Но такой эффект действительно заметен только у старых или дешевых DLP проекторов и легко лечится увеличением скорости вращения диска, или увеличением количества цветных сегментов.

Второй недостаток: DLP проекторы менее яркие, чем 3LCD проекторы. Это логично, так как тот же самый цветовой диск тупо отсекает часть света. Но сейчас, эта проблема уже не столь актуальна, и DLP практически сравнялись по яркости с 3LCD.

А ведь бывают еще трехматричные DLP, которые вообще ничем не уступают LCD и скорее соревнуются с LCoS, но это уже Hi-End сегмент.

XGIMI Horizon PRO

Поэтому, если объективно, технология DLP перевернула представление о том, каким может быть проектор. И тут проще всего показать на примере. Это XGIMI Horizon Pro — топовый 4K DLP проектор за адекватные деньги.

Вы про компанию XGIMI вряд ли слышали, но на самом деле, ребята с 2016 года делают топовые проекторы и очень известны среди ценителей больших экранов. Это проектор формата “всё в одном” с несколькими уникальными фишками.

Во-первых, тут очень простой процесс настройки. Просто ставишь проектор и он автоматически исправляет геометрию и фокусируется. Вообще ничего не надо делать. Если у вас есть экран, он его автоматически обнаруживает и подстраивается под размер. Если в кадре что-то мешает, например, картинка залезает на шкаф, дверь, выключатель, он также подстраивает картинку.

Это очень удобно. Фактически вы можете организовать просмотр кино, футбола, презентаций, вообще не напрягаясь, где угодно.

А поможет вам в этом второй приятный момент. Вы уже заметили, что проектор работает на Android TV 10, классном быстром необрезанном. Кстати с проектором идет шикарный пульт с голосовым управлением, поэтому по удобству этот проектор как хороший Smart TV.

Плюс тут отличный звук от Harman/Kardon — два динамика по 8 Вт. Конечно это не отдельный саундбар или система 7.1, но звук действительно приятный, объемный, детальный. Есть поддержка DTS и Dolby Atmos. По мне так больше ничего не надо.

Но конечно, главное достоинство проектора — качество изображения. Несмотря на то, что проектор можно сказать мобильный. Кстати, его можно использовать как Bluetooth колонку! Так вот, несмотря на это, картинка тут как у хорошего стационарного проектора.

  • Яркость 2200 ANSI Люменов
  • Разрешение 4K UHD
  • Цветовой охват 110% DCI-P3. Нехило, да?
  • Поддержка HDR10 и HLG

А теперь главное, размер проекции от 30 до 300 дюймов. Это целая стена!

Иными словами XGIMI Horizon PRO — домашний кинотеатр, который вы можете развернуть где угодно, как вам удобно. Можете поставить его на тумбочку, может подвесить к потолку, а может таскать из гостиной в детскую или вообще к друзьям, вместе в приставку гонять. Кстати, частота обновления 60 Гц.

Теперь важный момент, в линейке таких проекторов 2: Horizon и Horizon Pro и отличаются они только одним моментом: Horizon — это Full HD проектор, а Horizon Pro — 4K. Но тут есть нюанс.

XPR (pixel-shift). 

На самом деле, в обоих проекторах используется DMD матрица одной диагонали 0,47 дюйма и одного и того же разрешения 1920×1080, то есть физически там одинаковое количество микрозеркал. Но как же тогда в Horizon Pro мы получаем 4К изображение? Нас что обманывают? Нет, тут используется очень интересная технология сдвига пикселей, которая называется XPR.

Работает это следующим образом. На частоте 240 Гц изображение сдвигается на пол пикселя в 4 стороны: вправо, вниз, влево, вверх. Опять же наш глаз эту картинку склеивает и вместо 2 миллионов пикселей, мы видим 8,3 миллиона пикселей, то есть полноценное UHD изображение.

Что примечательно, это делается не программно, а при помощи специального оптического модуля, который наклоняется в 4 направлениях и немного сдвигает картинку.

Поэтому, по сути, Horizon отличается от Horizon Pro только отсутствием дополнительного XPR модуля.

Но разница между FHD и 4K со сдвигом пикселей действительно есть. Повышается детальность. Но самое, на мой взгляд, главное — полностью исчезает сетка пикселей, изображение становится однородным и более естественным.

Более того такой метод формирования 4К используют все современные потребительские DLP проекторы, даже в очень дорогих, кроме может быть самых премиальных супер-хай-энд решений.

Выводы

Надеюсь, вам, также как и мне, было интересно погрузиться в мир современных проекторов и узнать про эти крутейшие технологии. При этом мы рассказали далеко не всё. Это действительно интересная технология, а XGIMI Horizon и Horizon Pro в качестве примеров её применения — действительно шикарные проекторы, присмотритесь!

Что такое microLED и почему это круто? Разбор

microLED — новое слово в технологиях производства дисплеев, которое уже знакомо Apple и Samsung. Давайте разберёмся в чем суть технологии?
Валерий Истишев 15 ноября 2020 в 08:45

Уже не первый год утечки кричат, что Apple инвестирует много миллионов долларов в компании по разработке дисплеев на основе microLED.

Многие аналитики, в том числе анонимный китайский инсайдер @L0vetodream, заявляли в Твиттере, что в Apple Watch Series 6 будет совершенно новый дисплей, но этого не произошло.

Возможно виноват COVID-19, который затормозил процессы в технологической сфере и уже по новым данным нам известно, что новый тип дисплеев, microLED, мир увидит в гаджетах от яблочной компании не раньше 2023 года и, возможно, в совершенно новом гаджете!

Прошу не путать с miniLED, хоть названия и похожи — разница колоссальная. Сегодня мы заглянем в настоящее будущее дисплеев и разберемся во всём, как вы любите.

Почему не развивать дальше OLED?

Прежде чем отправиться в будущее давайте разберемся с проблемами настоящего. Сейчас идет эпоха OLED, но мы по-прежнему миримся с некоторыми болячками данных экранов: выгорание, время отклика, яркость, да и энергопотребление неплохо было бы понизить! И часть из этих проблем ушла бы в прошлое с уменьшением числа светодиодов!

Вы спросите, а почему нельзя было дальше развивать OLED просто уменьшая светодиоды? Дело в том, что если уменьшить размер элемента — снизится количество производимого света. А если повысить мощность, чтобы компенсировать уменьшение света — увеличится энергопотребление и нагрев, что в разы снизит срок службы органических соединений, который на фоне неорганических и так слишком мал.

Получается, что OLED в тупике — но почему же microLED видится как единственная правильная альтернатива и какие же продукты с этими экранами стоит ждать в первую очередь?

Что такое microLED?

Хоть о технологии мы услышали недавно — microLED начали создавать ещё в далёком 2000-ом году, два профессора в Канзасском государственном университете — Хунсин Цзян и Цзинюй Линь. Все эти 20 лет технология совершенствовалась. Если всё начиналось с простых несенсорных панелей с буквально несколькими субпикселями, крошечными огоньками красного, зелёного и синих цветов, то теперь это уже настоящее “поле” из миллионов таких огоньков.

К слову, только в 2011 году группа учёных наконец преодолела планку разрешения 640 на 480 пикселей в формате Video Graphics Array или VGA, где были хромовые синие и зеленые микродисплеи, способные передавать видео. Основная сложность в процессе создания таких дисплеев заключается в том, что. microLED использует очень маленькие светодиоды субпикселей, тех самых: RGB. Их размеры составляют порядка 5 микрон, у OLED размеры выше в разы красный – 64 на 46 мкм, зелёный – 95 на 15 мкм, синий – 95 на 49 мкм. (порядка 5 микрон в сравнении с миллиметровыми пикселями LED).

Кроме того время их отклика вместе с тем в разы меньше. И это один из первых бонусов, о котором мы еще поговорим подробнее.

Копнем глубже, и разберемся из чего же делаются и те, и другие светодиоды ведь именно материалы стали ключом к уменьшению размера.

MicroLED в отличие от OLED в качестве пикселей использует не органические светодиоды, а диоды на основе нитрида галлия, который широко используется для создания светодиодов полупроводниковых лазеров и сверхвысокочастотных транзисторов, в общем, для всего того, где нужна высокая точность и резкость. Такие диоды очень малы — около одной десятой толщины человеческого волоса!

В чём главный плюс в microLED от того, что используется неорганический светодиод?

Да в том, что он просто не выцветает в процессе использования, как его органический конкурент OLED.

Чтобы было проще понять, представьте: на солнце лежат две футболки — одна из 100% хлопка, а вторая синтетическая. Так вот та, что выполнена из натурального хлопка, выцветет или выгорит, а синтетическая продолжит лежать как ни в чём не бывало. Примерно то же происходит и с дисплеями — у OLED при длительном использовании будет постепенно проявляться те самые “выцветшие” пиксели, вы их заметите по жёлтому оттенку на дисплее.

microLED придёт на смену OLED?

А теперь посмотрим что же мы получим при переходе от OLED к MicroLED. Внимание на табличку.

OLED microLED
пиковая яркость: 1000-1200 нит пиковая яркость: 5000
органические элементы в составе “бесконечный” нитрид галлия
энергопотребление ниже, чем в LCD энергопотребление ниже, чем в OLED
один дисплей, состоящий из одной OLED-панели конструктивность, модульность
частота обновления до 240 Гц минимум 120 Гц (возможность увеличить)

В итоге мы получаем: более высокую яркость, эффективность, скорость, высокую термостабильность и контрастность.

Так, например, компания LuxVue, купленная Apple, в какой-то момент сообщила, что разработанная ею технология в девять раз ярче, чем OLED и LCD!

Да-да, вы не ослышались, Apple уже купила компанию по производству microLED! То есть уже с 2023 года в гаджетах из Купертино могут стоять собственные microLED-матрицы.

Продукты на microLED

Но если не заглядывать в будущее, что мы имеем сегодня на microLED?

Первым, кто попытался (именно попытался) представить технологию microLED свету, была компания Sony и их телевизор Crystal LED Display в 2012 году. В нём компания использовала всего 6,22 миллиона микросветодиодов, но исходя из тех показателей, что были заложены в модели, контрастность изображения по сравнению с ЖК-дисплеями стала в 3,5 раза выше, цветовой диапазон в 1,4 раза выше, углы обзора составляли более 180 градусов, а также вышло более низкое энергопотребление (менее 70 Вт) по сравнению с моделями на LCD.

“Лёд тронулся” благодаря Sony, но у телевизора безусловно присутствовали “детские болезни”, а главное, дисплей был целиком воспроизведён из одного “куска” microLED-панели, а не был модульным, как это предусматривается изначально.

Но прошло 5 лет, и Samsung ответила Sony, выпустив 146-дюймовый дисплей под названием “Стена”. И здесь корейская компания уже продемонстрировала возможность “собирать” экран под свои нужды и по необходимым размерам.

Хочешь небольшой телевизор с microLED на кухню? Да запросто! А, хочешь из тех же “частей” дособрать огромный телевизор в гостиную? Легко! Похоже, что использование модульного подхода становится промышленным стандартом для производства больших экранов.

Но увы, даже такой подход слишком дорого обходится потенциальному массовому покупателю — чего уж говорить, “Стена” выставлялась на продажу исключительно под заказ и ценник на них составлял от 490 000 долларов, а заканчивался на отметке в 1,68 млн долларов! И это без учёта налогов.

Почему же так дорого и где другие гаджеты с microLED-ом?

“Трудности” microLED

Технология хоть и новая, но трудности с выходом на массовый рынок всё те же, что и когда-то были и с OLED-ом. Всё дело в том, что производить в огромных количествах на первых порах и под каждого конкретного производителя (той же Apple) и его гаджеты, очень трудно!

Заводов ещё слишком мало, производство не такое масштабное, отсюда и цена! Сейчас, когда OLED-дисплеи стали массовыми цена постепенно опускается всё ниже и ниже, а сами дисплеи проверены временем, производителям проще сделать выбор в пользу имеющихся технологий.

Но уже сейчас сами создатели технологии microLED заявляют: “В связи с быстрым прогрессом, достигнутым в последнее время в этой области, вопрос уже не в том, сможет ли microLED, а в том, когда данные дисплеи проникнут на массовые рынки для различных применений”. Получается, это уже вопрос времени!

Будущее с microLED Какие же устройства будут первыми массовыми юзерами microLED-а?

Еще раз упоминая доклад по этой технологии, процитирую: “В настоящее время microLED находится под пристальным вниманием почти всех крупных компаний в области технологий для умных часов, смартфонов, умных очков, приборных панелей и пико-проекторов и 3D/AR/VR дисплеев”.

Почему именно эти области? Говоря о часах или Apple Watch, которые часто всплывали в слухах — там важнейшими параметрами являются энергопотребление и яркость — microLED даст прирост по обоим пунктам.

iPhone само собой перейдет на microLED, но тут нужно будет обеспечить огромные объемы производства. Что действительно интересно — загадочные Apple Glass могут также стать носителем microLED, на это даже намекает схематичное изображение в том самом докладе, оно перед вами.

Другое подтверждение далее по тексту: microLED “был исследован в качестве источника света для применения в оптогенетике и для связи с видимым светом”.

Если оптогенетика — это перспективное направление в медицине, то вот последняя фраза про “связь с видимым светом” намекает нам, что эти дисплеи, из-за своих конструктивных особенностей, будут использоваться не только в наших смартфонах, но и в умных очках, будь-то VR или AR.

Говоря другими словами, глаз находится в непосредственной близости от экрана и он способен разглядеть рисунок, в то время как расположение диодов OLED бы мешало погружению. У ЖК-дисплеев такой проблемы нет, но там по-прежнему нет и идеального черного. У microLED — маленькие диоды, рисунок будет замечен меньше и черный также идеальный еще и время отклика выше — одни бонусы.

Выводы

Подведём итог. microLED исправляет проблемы OLED, такие как выгорание, у него более высокая яркость и контрастность, а также возможность уменьшать или увеличивать дисплей под свои задачи — модульность. Осталось удешевить производство, чем сейчас и занимаются Apple и Samsung, инвестировав в данную технологию — уже несколько заводов переквалифицировались в производство microLED-дисплеев.

Но это не единственный тип дисплея не изученный нами: еще же есть какой-то miniLED.

Кстати, эту тему нам помог подготовить наш зритель Андрей Чуяшов — за что ему спасибо, хотите тоже поучаствовать идеями или готовыми сценариями пишите сюда
idea@droider.ru

 

ЖК или LCD-дисплеи: IPS, VA или TN-матрицы. РАЗБОР

Сегодня мы разбираемся с LCD или ЖК-телевизорами. Главная тема — разбор типов матриц: IPS, VA или TN. Плюсы и минусы, и конечно — что выбрать?
aka_opex 4 июня 2020 в 11:03

Мы каждый день пялимся в экраны. Все они вроде состоят из одинаковых цветных пикселей, но почему тогда на разных дисплеях разное качество изображении. От чего это зависит?

Посмотрим на экран телевизора под микроскопом. Мы увидим структуру цветных пикселей. В этом и есть весь секрет! Сегодня мы разбираемся: какие типы ЖК или LCD матриц существуют, как они устроены, какие у них особенности и бонусы. И какую лучше выбрать для телевизора себе домой! И зачем телевизору мощный процессор

Спойлер: Это будет телевизор Philips, но не переживайте, материал в первую очередь про технологии.

Принцип работы ЖК

Мы знаем, что изображение на экране телевизора состоит из пикселей. Но из чего состоят сами пиксели? Это очень интересно. Смотрите!

Если посмотреть на пиксель спереди, мы увидим 3 цветных субпикселя: красный, зеленый и синий. На самом деле это просто цветовые фильтры, и они сами не светятся, а только окрашивают свет. Сзади пикселя находится подсветка. Она равномерно подсвечивает все пиксели. По крайней мере, хорошая подсветка делает это равномерно.

Но если одинаково подсветить красный, зеленый и синий субпиксели. Цвета смешаются в одинаковой пропорции и мы получим просто белый цвет. А нам нужны миллионы разных оттенков. Как же их получить?

Во-первых, нужно научиться полностью блокировать свет в каждом субпикселе. Как думаете это делается? При помощи какой-то шторки, которая опускается и поднимается? Нет, гораздо круче!

В дело вступают поляризационные фильтры. В пикселе их сразу два, они стоят друг за другом. Сначала идёт вертикальный фильтр, а потом горизонтальный. Проходя через первый фильтр свет как бы сплющивается в вертикальном направлении и становится поляризованным в одной плоскости.

А вертикально поляризованный свет уже не может пройти через горизонтальный фильтр! Профит! Мы блокировали подсветку. Но как теперь её разблокировать?

Вот как раз для этого и нужен слой с жидкими кристаллами, давшими название всей технологии. Он расположен в самом центре пикселя, как в сэндвиче: между двумя поляризационными фильтрами. Под воздействием тока кристаллы поворачиваются и вместе с собой поворачивают свет. И помогают ему пройти в нужном количестве.

То есть основная задача жидких кристаллов управлять интенсивностью света. Все ЖК-матрицы работают по этому принципу, но реализаций его масса. Отсюда разные типы матриц: IPS, TN и VA.

TN-матрица

Самые дешевые матрицы — TN. В них жидкие кристаллы закручены в спираль, проводящую свет от вертикального к горизонтальному поляризационному фильтру. Поэтому они и называются Twisted Nematic, то есть скрученный нематический кристалл.

Такие кристаллы могут работать всего в двух состояниях:

  • Скрученное состояние — это когда проходит 100% света
  • Хаотичное — когда свет не проходит.

Соответственно, такие матрицы способны передавать лишь очень ограниченное количество цветов. Всего 6 бит на канал, т.е. 262 144 оттенков цвета. Считается как 2 в шестой степени на красный, зелёный и синий каналы цвета.

А еще из-за такой структуры у экранов ужасные углы обзора, в особенности по вертикали. Поэтому такие матрицы в телевизорах практически не используются. Зато они используются в игровых мониторах — потому что быстрые. Помните? Всего два положения в кристалле (вкл/выкл), поэтому и быстрые.

Двигаемся дальше. В телевизорах чаще всего встречаются матрицы типа VA и IPS. Про OLED сегодня не говорим, там вообще другой принцип работы, да и эти матрасы очень дорогие. Поэтому сегодня только ЖК. Начнём с IPS.

IPS-матрицы

IPS расшифровывается как In-Plane Switching или планарное переключение. В таких матрицах кристаллы не скручиваются относительно друг-друга. Они всегда выстроены в одну линию. По умолчанию, они стоят в горизонтальном положении и не пропускают свет.

В отличие от TN в IPS можно регулировать угол поворота кристалла и менять количество пропускаемого света. А это значит, что можно плавно регулировать яркость каждого пикселя.

Поэтому такие матрицы отлично калибруются и способны передавать до 10 Бит на канал. А этому уже больше 1 млрд. цветов — 1,07 млрд, если быть точным.

Также при такой компоновке свет лучше рассеивается, и это сильно увеличивает угол обзора. Поэтому IPS-матрицы так уважают профессионалы, работающие с цветом.

Как правило на макрофотографии IPS-матриц структура выгляди необычно — пиксели расположены под углом друг к другу и выглядит всё это как стрелочки. Хотя бывают и исключения в виде вот таких PLS, который тоже относятся к IPS-подобным.

Но есть у IPS и серьезные недостатки. Во-первых, время отклика. На первых IPS-панелях оно было 50 мс. Сейчас рекорд 4 мс, но это на самых дорогих панелях. В TN-матрицах, для примера — всего 1 мс.

Потом в таких матрицах расстояние между кристаллами достаточно высокое, а значит и подсветку они блокируют не очень эффективно. Из-за этого  появляются засветы и вообще уровень черного света оставляет желать лучшего. В IPS-матрицах черный экран — это скорее загадочная синеватая дымка.

И если на мелких экранах смартфонов, это не так заметно. Хотя… по мне так очень заметно, спасибо — iPhone SE! То на большой диагонали в 40-50 дюймов проблема уже явно бросается в глаза. Поэтому для телевизоров очень часто выбор падает в пользу другого типа матриц. А именно VA.

VA-матрицы

Кристаллы в VA-матрицах, если смотреть на них в разрезе сбоку расположены по вертикали, поэтому VA означает Vertical Alignment.

А вот по отношению к поляризационным фильтрам жидкие кристаллы расположены перпендикулярно по отношению к фильтрам. В таком положении свет без затруднений через них проходит. Поэтому по глубине черного цвета и уровню контрастности VA-матрицы опережают IPS в 3 или даже в 5 раз. Это колоссальная разница, поверьте.

Но из-за вертикального расположения кристаллов страдают углы обзора по горизонтали. Если в IPS-матрицах угол обзора где-то 178 градусов, в VA этот показатель 160.

Второй недостаток VA-матриц. В отличие от IPS в VA нельзя плавно регулировать угол наклона кристалла, а значит нельзя плавно регулировать яркость каждого субпикселя. Поэтому качество цветопередачи тут не такое хорошее, как в IPS матрицах.

Но и не всё так плохо. Современные VA-матрицы — мультидоменные. Это значит, что в одном субпикселе есть несколько блоков с жидкими кристаллами, которыми можно управлять отдельно. А значит у каждого субпикселя есть несколько ступеней яркости. Это хорошо видно по фотографиям VA-матриц.

Поэтому современные VA спокойно выдают 8-битный цвет. А с использованием технологии FRC (Frame rate control), то есть быстрого мигания пикселя, получается добиться почти честного 10-битного изображения.

Подсветка

Как-то сложновато? Сейчас запутаем еще больше.

На качество изображения естественно влияет не только качество матрицы. Следующий важный момент — это подсветка.

Она бывает двух типов Direct-LED — это когда LED-лампочки расположены по всей площади задней стенки.

И второй тип Edge-LED — когда свет идет с какой-то одной стороны, как правило снизу, а весь экран освещается за счёт рассеивающего фильтра.

Естественно Direct-LED позволяет сделать подсветку однороднее. Но самое главное Direct-LED позволяет реализовать функцию Local Dimming, т.е. локальное отключение подсветки в темных областях кадра. Что сильно повышает контрастность увеличивает динамический диапазон. А значит позволяет смотреть HDR-контент.

На IPS-матрицах эффект от локального затемнения менее выражен, поэтому чаще телики идут в паре с Edge-LED подсветкой.

А вот сочетание хорошей VA-матрицы и правильной подсветки дают отличный результат. Чтобы вы понимали, если это не OLED, в премиальном телевизоре, как правило будет установлена именно VA-матрица.

При этом VA — недорогая технология, поэтому и в среднем ценовом сегменте тоже можно найти хороший вариант.

Philips 55PUS7303

Например, по нашей просьбе Philips прислал модель 55PUS7303. Почему мы попросили именно её? Тут есть три примечательные вещи:

1. В дополнение к VA-матрице и Direct-LED подсветке, здесь используется технология Micro Dimming Pro. Она сочетает в себе 300 физических зон локального затемнения подсветки и 6400 программных зон, которые подстраивают яркость и контрастность изображения в зависимости от сцены и освещенности в комнате.

Поэтому на практике получаем очень сочную контрастную картинку без видимого глоу-эффекта от подсветки.

Кстати, большую роль в качестве картинки тут играет процессор Philips P5. Он в реальном времени анализирует изображение и всячески его прокачивает: апскейлит, дорисовывает кадры, если надо, регулирует контрастность и прочее. В телевизорах процессоры реально решают.

2. Так как это Philips, кайфа доставляет технология Ambilight. С этой штукой вообще надо быть осторожным. Один раз купите Philips, возможно, обратной дороги не будет. С Ambilight любой контент выглядит объемнее, эффектнее и ночью меньше глаза устают!

3. Наше любимое — телевизор работает на Android TV, поэтому если вы хотите иметь выбор какой контент смотреть и любите всё настроить под себя — в этом плане вне конкуренции.

Отличаем VA от IPS

Вернёмся к матрицам. При выборе телевизора стоит учитывать один большой нюанс. Тип матрицы в телевизорах очень часто варьируется от партии к партии. И поэтому в магазине могут не знать какая матрица стоит конкретно в этом экземпляре.

Данная модель телевизора Philips 55PUS7303 есть в трёх диагоналях — 50, 55 и 65 дюймов. В этих размерах чаще всего устанавливают VA-матрицы. А вот в моделях с диагоналями поменьше уже чаще попадается IPS.

Пока вживую не посмотришь на конкретный экземпляр, наверняка не скажешь какая матрица установлена. Поэтому делимся с вами несколькими лайфхаками, как быстро отличить VA от IPS.

Проверяем углы обзора. При взгляде сбоку VA-матрицы бледнеют больше чем IPS. Но это ненадежный способ, т.к. современные VA-матрицы выцветают не так уж сильно. Поэтому предлагаем ещё один.

Если несильно провести пальцем по VA панели останется явный шлейф от пикселей. На IPS такого эффекта не бывает. Только не нужно сильно давить — совсем легонько.
Ну и конечно, можно проверить уровни черного. На IPS черный цвет синит и не черный вовсе.

А самые харкорные ребята могут посмотрет структуру пикселей если запастись макрообъективом или лупой.

Рекомендации

Наиболее универсальный вариант для дома телевизоры с VA-матрицей: в них лучше уровень черного, равномерность подсветки и контрастность в целом. Такие телевизоры хорошо подойдут и для просмотра и для игр.

Тем не менее, нельзя сказать что IPS — это плохо. Здесь тоже есть свои преимущества. Если для вас очень важна точность цветопередачи, или вы часто будете смотреть телевизор под большим углом, берите IPS.

Но вообще рекомендуем выбирать телевизоры вживую, посмотрите что вам больше нравится и берите. А теоретические знания позволят вам сделать более осознанный выбор.

Xiaomi инвестирует 20 000 000$ в OLED-технологии

Xiaomi вкладывается в крупнейшего китайского игрока, создающего всевозможные дисплеи! Что это — уменьшение зависимости или вклад в новые технологии?

Компания Xiaomi инвестировала 143 миллиона юаней (примерно 20 миллионов долларов США) в главного китайского OLED-производителя Dalian Zhiyun Automation Company. Кроме OLED она выпускает LCD и даже mini LED решения.

Сумма, вложенная Xiaomi равна примерно 15,5 миллионам акций или 5,63% от общей стоимости компании. Zhiyun — крупнейшая китайская дисплейная компания и известна также по брендам BOE, Huaxing, Tianma и Visionox. Все эти бренды соперничают с южнокорейским Samsung — заслуги которого в плане OLED не поддаются сомнению.

 

Аналитики ожидают, что кроме растущей роли LCD для массового сегмента, Zhiyun сможет сыграть серьёзную роль в производстве гнущихся дисплеев, а также всевозможных технологий, связанных с новыми экранами.

QLED vs OLED: В чём разница?

Мы сравнили картинку с QLED и OLED-дисплея и попробовали сформулировать, в чём же разница для пользователя! А заодно рассказали об этих технологиях.
vedensky 23 февраля 2020 в 08:10

QLED, AMOLED, LCD, OLED! Квантовые дисплеи, органические светодиоды! Где маркетинг, а где реальные технологии? Маркетологи придумывают все новые и новые красивые названия для технологий. Но
что за ними скрывается? Сегодня разберем все основные типы экранов, и наглядно посмотрим в чем разница между QLED и OLED и уже закроем вопрос с выбором телевизора! И не только…

У всех трех технологий есть общее слово в названии — LED. Неудивительно, что люди путаются ведь у всех трёх технологий есть общие три буквы в названии: L, E, и D. А расшифровываются они как Light-Emitting Diode, что по-русски означает — светоизлучающий диод, или просто светодиод.

Поэтому прочитав в названии телевизора QLED или OLED, может показаться что эти технологии — это примерно одно и тоже. На самом же деле, всё гораздо интереснее. Давайте разбираться.

Впрочем, наличие LED в названии вовсе не означает, что технологии похожи!

QLED

Наиболее таинственная и неоднозначная аббревиатура это QLED. С неё и начнём.

QLED расшифровывается как Quantum-dot Light-Emitting Diode, или – светодиод с использованием квантовых точек. Квантовые точки — это разного рода нано-частицы, которые фотоактивны, т.е. под внешним воздействием, например, тока, либо света они начинают излучать свет. А из-за своего малого размера подчиняются они
квантовым законам.

Звучит очень круто! Смотришь Ворониных на квантовом дисплее! Только вот название QLED маркетинговое и оно не совсем точно отражает суть технологии. Смотрите.

Квантовые точки — невероятно крутой материал – они очень маленькие, просто крохотных размеров. Только представьте — нано-частицы, которые светятся всеми цветами радуги. Теоретически на их основе можно было бы создавать потрясающего качества дисплеи: яркие, сочные и энергоэффективные.

Вот только есть проблема — в современных телевизорах ещё никто не смог заставить квантовые точки излучать свет при стимуляции током. А значит пришлось работать по плану Б — использовать дополнительную мощную подсветку, требующую усиления потребления телевизором электроэнергии для активации этих точек.

Это привело к тому, что структура современного QLED- телевизора обросла массой дополнительных слоёв. Вот как это работает:

Первый слой это белая LED подсветка, загораясь включаясь она активирует второй слой — квантовые очки. Свечение усиливается и становится цветным. И только после этого оно световой поток попадает на слой с жидкими кристаллами.

По сути слой квантовых точек делает две вещи: усиливает подсветку, и добавляет цвет. Но самостоятельной матрицей он быть не может.

СТОП! Это же тоже самое, что и старые ЖК-телевизоры, только добавили цветную квантовую подсветку посередине!

Всё так. Решение не элегантное. И даже как-то обидно использовать такой крутой материал в сочетании с уже устаревшими ЖК-матрицами. Поэтому честнее было бы назвать технологию QLCD, тогда бы было меньше путаницы.

Тем не менее, технология QLED всё-таки даёт весомые преимущества перед обычными ЖК: во-первых, картинка получается более яркой, всё-таки появилась вторая подсветка.

Во-вторых, т.к. квантовые точки светят разным цветом, мы получаем и более насыщенную, реалистичную, живую картинку. Изображение на таких телевизорах действительно выглядит круто!

Но при этом старые болячки LCD-матриц остались. Из-за того, что пиксели святятся не самостоятельно, а при помощи аж двух подсветок здесь нельзя добиться честного черного цвета. Да, можно по-умному управлять подсветкой, стараясь отключать её ещё в нужных областях, но при этом по краям ярких объектов всё равно будут ореолы свечения. Так себе экспириенс.

А так как большинство QLED телевизоров создаются на базе VA-матриц (а не IPS), мы получаем ограниченные углы обзора и большое время отклика. В самых дорогих и крутых QLED телевизоров эти недостатки сведены к минимуму за счет разных ухищрений, они все равно будут проигрывать качественным OLED аналогам, где проблем не было изначально.

Кстати, не только Samsung делают QLED телевизоры. Другие компании используют квантовые точки, но называют эту технологию по своему. У LG — это NanoCell, у Sony — Triluminos, ещё есть Hisense со своим ULED.

OLED

OLED — это хорошо нам известные по смартфонам матрицы на органических светодиодах. Органический — не значит, что светодиод живой, просто они сделаны из органических материалов. Изобрёл, OLED, кстати, один физик-химик из компании Kodak в 1987 году, чтобы избежать увольнения. На полном серьёзе, было примерно так:

Кодак: Ты уволен.

Физик-химик (Чинг В. Тан): Вот зацените, светится.

Кодак: Тогда оставайся.

В отличие от ЖК, OLED-дисплеям не нужна дополнительная подсветка, здесь каждый пиксель излучает свет самостоятельно. И это ключевая штука.

Поэтому дисплеи могут быть невероятно тонкими и гнущимися. Например, у LG есть телевизор обои — его можно просто приклеить к стене,. Или, у них же, а также телевизор, который сворачивается в рулон. Но самое главное, в OLED экранах можно управлять каждым пикселем по отдельности. Поэтому, чтобы показать премиальный черный цвет – пиксель можно просто выключить.

Отсюда и глубокий черный цвет, и бесконечная контрастность и максимальные углы обзора при экономии энергии.

Кстати, опять же LG усовершенствовали OLED матрицы, добавив к стандартным RGB субпикселям еще и белый субпиксель. получилось WRGBW. Это позволило добиться очень более естественной цветопередачи да и яркость повысилась!

Но это всё теория, мы сделали реальное сравнение. Во-первых, хочу показать толщину: OLED — конечно круто выглядит.

В светлых сценах в помещении оба изображения выглядит потрясно. На QLED можно сделать ярче, но будет избыточно. Цветопередача и там и там очень естественная, разве что самые яркие участки на QLED выглядят более детализировано детализированнее. Но это заметно только при прямом сравнении.

А вот в тёмных сценах, получается забавная штука. Когда на экране два одинаковых видео, но на QLED картинка выглядит заметно тусклее. Как так?

С одной стороны, QLED выигрывает по пиковой яркости у OLED, причём в разы. Но это работает только в ярких сценах, когда подсветка задействована на максимум. По статистике в любом современном фильме или сериале более 64,7% сцен в темных тонах и оттенках. В темных же сценах QLED вынуждены отключать подсветку в черных участках, чтобы добиться глубокого цвета. Именно поэтому светлым участкам не хватает контраста. И наоборот: зажечь парой пикселей одну отдельную звезду может только OLED, на QLED будет светиться целая область. Звездные войны, к примеру я бы смотрел только на OLED.

Итоги

В итоге, QLED — телевизоры показывает классную картинку. Явно лучше, чем старые добрые LCD. Но технология еще явно нуждаются в доработке. Поэтому для домашнего использования, чтобы посмотреть кинишко или поиграть я бы рекомендовал брать OLED. Чем и сам пользуюсь.

Окна будущего от Samsung [First-look]

bilanuke 5 сентября 2012 в 11:02

Очень многие гаджеты и девайсы, придуманные писателями-фантастами XX века, уже получили свое реальное воплощение в наше время. Но инженерная мысль не стоит на месте. В доказательство, компания Samsung продемонстрировала прозрачный экран — Transparent LCD.

Эти экраны представляют собой стекло, на которое наклеена специальная пленка толщиной в 2 миллиметра. Это покрытие и является активной частью такого монитора. В нерабочем состоянии она полностью прозрачна, как и стекло, к которому она прикреплена. В рабочем режиме на ней появляется полноцветное изображение. (далее…)

[Технологии] Какие дисплеи используются в современных гаджетах?

bilanuke 17 июня 2012 в 09:35

В обзорах смартфонов и планшетов мы уделяем достаточно много внимания дисплеям и технологиям, по которым они производятся. Это и немудрено, ведь сенсорные экраны занимают до 90% фронтальной поверхности мобильных устройств и являются основным элементом управления.

Сейчас на рынке широко используется несколько различных технологий изготовления экранов: AMOLED, LCD, TFT и E-Ink. В этом обзоре мы подробно рассмотрим каждую технологию: принцип действия, главные преимущества и недостатки. (далее…)

10-дюймовый Galaxy Tab

Alexandr 11 ноября 2010 в 06:14

Samsung Electronics представила на выставке FPD International 2010 в Японии макет своего нового 10-дюймового планшета. Устройство обладает новым супер тонким LCD-дисплеем, толщиной всего 1,8 мм. Такой толщины удалось добиться благодаря новому производственному процессу и  композитной подложке. Для сравнения, толщина нового дисплея без слоя подсветки 0.44 мм с весом 28 грамм, а у обычного дисплея Samsung LCD (со стеклянной подложкой) толщина 1.26 мм и вес 130 грамм.

Разница впечатляющая. Разрешение нового дисплея 1024х600(такое же как у Galaxy Tab), уровень контрастности — 1000:1, а яркости — 250 кд/м2. (далее…)